MATH 53, Solutions to Practice for Midterm 2

Please email me if you spot any mistakes.

Problem 1. Explain why $f(x, y)=2 x^{2}+y^{2}$ must have absolute extrema constrained to the circle $x^{2}+y^{2}=1$, and find them with Lagrange multipliers.

Solution. The circle is closed and bounded and the function f is continuous, hence the Extreme Value Theorem guarantees the existence of absolute extrema of f on $x^{2}+y^{2}=1$.

The Lagrange multiplier system is

$$
\begin{aligned}
4 x & =\lambda 2 x \\
2 y & =\lambda 2 y \\
x^{2}+y^{2} & =1
\end{aligned}
$$

Remember, λ is only an auxiliary variable, so we should try to get rid of it ASAP. If we multiply the first equation by y and the second equation by x, we see that $4 x y=\lambda 2 x y=2 x y$. But this means $x y=0$, so either $x=0$ or $y=0$. Hence our candidates are $(0,1),(0,-1)$ in the former case and $(1,0),(-1,0)$ in the latter. Evaluation of f at all four points shows that the maximum value of f is 2 , attained at the points $(1,0),(-1,0)$, and the minimum value of f is 1 , attained at the points $(0,1),(0,-1)$.

By the way, you could've started out by noticing $f(x, y)=2 x^{2}+y^{2}=x^{2}+1$ on the constraint region! So the problem is equivalent to finding the extrema of $x^{2}+1$ on the same circle, which would result in simpler computations.

Problem 2. Evaluate the integral

$$
\int_{0}^{\sqrt{2}} \int_{y^{2}}^{2} \frac{y}{1+x^{2}} \mathrm{~d} x \mathrm{~d} y
$$

Solution via switching order of integration. Looking at the given integrand, I'd rather integrate with respect to y than x. The region of integration is

$$
\begin{gathered}
y^{2} \leq x \leq 2 \\
0 \leq y \leq \sqrt{2} .
\end{gathered}
$$

To switch this to the integration order $\mathrm{d} y \mathrm{~d} x$, you should draw a picture! Do that now before reading on.
The inequalities involving y are $y^{2} \leq x$ (so $y \leq \sqrt{x}$) and $0 \leq y \leq \sqrt{2}$. Since $x \leq 2$, the inequality $y \leq \sqrt{2}$ is redundant because we already have $y \leq \sqrt{x}$. Hence

$$
0 \leq y \leq \sqrt{x}
$$

Now we are left with the inequalities

$$
\begin{gathered}
0 \leq \sqrt{x} \\
x \leq 2
\end{gathered}
$$

where the first is always true-provided it exists! That is, it's a reminder to us that $x \geq 0$. Hence the x bounds are just

$$
0 \leq x \leq 2
$$

So our rewritten double integral is

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{\sqrt{x}} \frac{y}{1+x^{2}} \mathrm{~d} y \mathrm{~d} x & =\int_{0}^{2} \frac{x}{2\left(1+x^{2}\right)} \mathrm{d} x \\
& =\left.\frac{1}{4} \ln \left(1+x^{2}\right)\right|_{x=0} ^{2}=\frac{1}{4} \ln 5 .
\end{aligned}
$$

Solution via direct integration. In this problem, it is actually possible to integrate the expression as writtenprovided you remember how to work with arctan (it can be integrated by parts).

$$
\begin{aligned}
\int_{0}^{\sqrt{2}} \int_{y^{2}}^{2} \frac{y}{1+x^{2}} \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{\sqrt{2}}\left(y \arctan 2-y \arctan \left(y^{2}\right)\right) \mathrm{d} y \\
& =\left.\left(\frac{1}{2} y^{2} \arctan 2\right)\right|_{y=0} ^{\sqrt{2}}-\int_{0}^{2} \frac{1}{2} \arctan (u) \mathrm{d} u \quad \text { where } u=y^{2} \\
& =\arctan 2-\left(\left.\left(\frac{u}{2} \arctan u\right)\right|_{u=0} ^{2}-\int_{0}^{2} \frac{u}{2} \frac{1}{u^{2}+1} \mathrm{~d} u\right)=\int_{0}^{2} \frac{u}{2} \frac{1}{u^{2}+1} \mathrm{~d} u \\
& =\left.\frac{1}{4} \ln \left(1+x^{2}\right)\right|_{x=0} ^{2}=\frac{1}{4} \ln 5 .
\end{aligned}
$$

Problem 3. Find the volume of the region above the cone $z=\sqrt{x^{2}+y^{2}}-2$ and the below the paraboloid $z=$ $4-x^{2}-y^{2}$.

Solution. Call the region E. You could set this up either as a triple integral or a double integral. As a triple integral it'd be

$$
\iiint_{E} 1 \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\iint_{R} \int_{\sqrt{x^{2}+y^{2}}-2}^{4-x^{2}-y^{2}} 1 \mathrm{~d} z \mathrm{~d} x \mathrm{~d} y
$$

where R is some region in the $x y$-plane to be determined (namely, the projection of E into the $x y$-plane). If we set it up as a double integral itd be

$$
\iint_{R}\left(\left(4-x^{2}-y^{2}\right)-\left(\sqrt{x^{2}+y^{2}}-2\right)\right) \mathrm{d} x \mathrm{~d} y
$$

which is of course the same thing. Since the region E is described by the inequality

$$
\sqrt{x^{2}+y^{2}}-2 \leq z \leq 4-x^{2}-y^{2}
$$

the region R is described by the inequality

$$
\sqrt{x^{2}+y^{2}}-2 \leq 4-x^{2}-y^{2}
$$

We're seeing an awful lot of $x^{2}+y^{2}$, so that's a hint to switch to polar. Our region R is then described by $r-2 \leq 4-r^{2}$, which after simplification (keeping in mind that we assume $r \geq 0$ as usual) we get $0 \leq r \leq 2$. Switching to polar our double integral becomes

$$
\int_{0}^{2 \pi} \int_{0}^{2}\left(6-r^{2}-r\right) r \mathrm{~d} r \mathrm{~d} \theta=\frac{32 \pi}{3}
$$

Problem 4. Convert the following triple integral to Cartesian coordinates, but do not evaluate it.

$$
\int_{0}^{\pi / 2} \int_{0}^{1} \int_{r^{2}}^{r} r^{2} \cos \theta \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta
$$

Solution. We have

$$
r^{2} \cos \theta \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta=x \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
$$

and the region of integration is

$$
\begin{gathered}
r^{2} \leq z \leq r \\
0 \leq r \leq 1 \\
0 \leq \theta \leq \pi / 2
\end{gathered}
$$

In Cartesian,

$$
\begin{gathered}
x^{2}+y^{2} \leq z \leq \sqrt{x^{2}+y^{2}}, \\
0 \leq \sqrt{x^{2}+y^{2}} \leq 1, \\
x \geq 0, y \geq 0 .
\end{gathered}
$$

The last inequality is a litle tricky to convert algebraically, because θ is not a well-defined function of x, y, z. But geometrically, it is easy to see the θ bounds just mean that $x, y \geq 0$. The region is bounded between an elliptic paraboloid and a cone.

Let's set this up with integration order $\mathrm{d} z \mathrm{~d} y \mathrm{~d} x$. The innermost z-bounds are evident from the first inequality. Now we project onto the $x y$-plane and are left with the inequalities

$$
\begin{gathered}
x^{2}+y^{2} \leq \sqrt{x^{2}+y^{2}} \\
0 \leq \sqrt{x^{2}+y^{2}} \leq 1 \\
x \geq 0, y \geq 0
\end{gathered}
$$

but the first inequality is already implied by the second line. We have just a quarter-disk in the first quadrant. The middle y-bounds are thus $0 \leq y \leq \sqrt{1-x^{2}}$, and the outermost x-bounds are 0 to 1 .

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{\sqrt{x^{2}+y^{2}}} x \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x
$$

Problem 5 (Stewart Ch. 15 Review \#55). Evaluate

$$
\iint_{R} \frac{x-y}{x+y} \mathrm{~d} x \mathrm{~d} y
$$

where R is the square with vertices $(0,2),(1,1),(2,2),(1,3)$.
Solution. After drawing the region and inspecting the integrand, applying a change of variables seems like a good idea. Indeed, the region is described algebraically as

$$
\begin{gathered}
2 \leq x+y \leq 4 \\
-2 \leq x-y \leq 0
\end{gathered}
$$

If we also glance at the integrand, we see there's a lot of hints pointing to the change of variables $u=x-y, v=x+y$.
The region and function of integration are easy to rewrite in terms of u, v, so we need only figure out what happens to $\mathrm{d} x \mathrm{~d} y$. The direct approach is to solve for x, y in terms of u, v, which is really the "correct" way to describe the change of variables:

$$
\begin{array}{r}
x=\frac{u+v}{2} \\
y=\frac{v-u}{2} \\
\left|\operatorname{det}\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]\right|=1 / 2
\end{array}
$$

so $\mathrm{d} x \mathrm{~d} y=\frac{1}{2} \mathrm{~d} u \mathrm{~d} v$. Alternatively, one could compute the Jacobian of the inverse transformation $u=x-y, v=x+y$ and then take its reciprocal:

$$
\left|\operatorname{det}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\right|=2
$$

so $\mathrm{d} u \mathrm{~d} v=2 \mathrm{~d} x \mathrm{~d} y$. Note however, that solving for x, y in terms of u, v may be necessary to rewrite the function of integration. After all this it's just direct computation:

$$
\int_{2}^{4} \int_{-2}^{0} \frac{u}{v} \frac{1}{2} \mathrm{~d} u \mathrm{~d} v=-\ln 2
$$

Problem 6 (Stewart $\$ 16.2 .2$). Let C be the part of the curve $x^{4}=y^{3}$ between the points $(1,1)$ and $(8,16)$. Compute $\int_{C}(x / y) \mathrm{d} s$.

Solution. First we parametrize C; there are many options but I will use

$$
x=t^{3}, y=t^{4}, 1 \leq t \leq 2 .
$$

(Before reading on, check that this does in fact parametrize C.) Since

$$
\mathrm{d} s=\sqrt{\left(3 t^{2}\right)^{2}+\left(4 t^{3}\right)^{2}} \mathrm{~d} t=t^{2} \sqrt{9+16 t^{2}} \mathrm{~d} t
$$

our integral is

$$
\begin{array}{rlr}
\int_{C}(x / y) \mathrm{d} s & =\int_{1}^{2} \frac{t^{3}}{t^{4}} t^{2} \sqrt{9+16 t^{2}} \mathrm{~d} t \\
& =\int_{1}^{2} t \sqrt{9+16 t^{2}} \mathrm{~d} t \\
& =\frac{1}{32} \int_{25}^{73} \sqrt{u} \mathrm{~d} u \quad \text { where } u=9+16 t^{2} \\
& =\frac{1}{48}\left(73^{3 / 2}-125\right) .
\end{array}
$$

Problem 7.

a) Find a function $f(x, y, z)$ such that

$$
\nabla f=\left\langle 3 x^{2} y z-3 y, x^{3} z-3 x, x^{3} y+2 z\right\rangle
$$

Solution. From $f_{x}(x, y, z)=3 x^{2} y z-3 y$, integration gives

$$
f(x, y, z)=x^{3} y z-3 x y+C(y, z)
$$

where $C(y, z)$ is some function of y, z to be determined. Differentiation with respect to y yields

$$
f_{y}(x, y, z)=x^{3} z-3 x+C_{y}(y, z)=x^{3} z-3 x
$$

thus $C_{y}(y, z)=0$, meaning $C(y, z)=D(z)$, a function depending only on z. Computing f_{z} gives

$$
f_{z}(x, y, z)=x^{3} y+D^{\prime}(z)=x^{3} y+2 z
$$

therefore $D(z)=z^{2}+E$ where E can be any constant-and for convenience we take $E=0$. Thus the following function will suffice.

$$
f(x, y, z)=x^{3} y z-3 x y+z^{2}
$$

b) Let C be the line segment starting at $(0,0,2)$ and ending at $(0,3,0)$. Evaluate

$$
\int_{C}\left\langle 3 x^{2} y z-3 y+\arctan (y z), x^{3} z-3 x+2 \cos \left(x^{2}\right), x^{3} y+2 z\right\rangle \cdot \mathrm{d} \mathbf{r}
$$

Solution. Notice that the vector field we are asked to integrate is

$$
\nabla f+\left\langle\arctan (y z), 2 \cos \left(x^{2}\right), 0\right\rangle
$$

From FTLI we get

$$
\int_{C}(\nabla f) \cdot \mathrm{d} \mathbf{r}=f(0,3,0)-f(0,0,2)=-4
$$

The other integral simplifies nicely once we notice that $\mathrm{d} x=0$ and $x=0$ along C, so

$$
\int_{C}\left\langle\arctan (y z), 2 \cos \left(x^{2}\right), 0\right\rangle \cdot\langle\mathrm{d} x, \mathrm{~d} y, \mathrm{~d} z\rangle=\int_{C} 2 \cos 0 \mathrm{~d} y=\int_{C} 2 \mathrm{~d} y=6 .
$$

If you do not understand how this simplification worked, you ought to directly parametrize C and compute the integral that way (you will witness the simplifications happen naturally if you do that). Our final answer is $-4+6=2$.

Problem 8. Let C be the ellipse $x^{2} / 4+y^{2}=1$, oriented counterclockwise. Briefly explain why Green's theorem cannot be directly applied to the integral

$$
\int_{C}\left(y \log _{4}\left(x^{2}+4 y^{2}\right)+3 x^{2} y^{2} \cos \left(x^{3}\right)\right) \mathrm{d} x+\left(-7 x+2 y \sin \left(x^{3}\right)\right) \mathrm{d} y .
$$

Find a way around this issue and evaluate the integral.

Solution. If we wish to apply Green's theorem

$$
\int_{\partial D}\langle P, Q\rangle \cdot \mathrm{d} \mathbf{r}=\iint_{D}\left(Q_{x}-P_{y}\right) \mathrm{d} x \mathrm{~d} y
$$

then it is not enough that P, Q are nice along the boundary $\partial D \ldots$ we need Q_{x}, P_{y} to be nice on the enclosed region D as well! The glaring issue with the given integral is that $\log _{4}\left(x^{2}+4 y^{2}\right)$ is not defined when $(x, y)=(0,0)$, which is a point enclosed by C.

An easy way around this is to note that the given integral takes place on C, and all points on C satisfy the equation $x^{2} / 4+y^{2}=1$ (by definition). Hence we may replace $\log _{4}\left(x^{2}+4 y^{2}\right)$ by $\log _{4} 4=1$ without affecting the value of the given line integral. After we do that, we are in the clear to use Green's theorem. As C is already oriented positively (i.e. counterclockwise),

$$
\int_{C}\left(y+3 x^{2} y^{2} \cos \left(x^{3}\right)\right) \mathrm{d} x+\left(-7 x+2 y \sin \left(x^{3}\right)\right) \mathrm{d} y=\iint_{D}\left(\left(-7+6 x^{2} y \cos \left(x^{3}\right)\right)-\left(1+6 x^{2} y \cos \left(x^{3}\right)\right)\right) \mathrm{d} x \mathrm{~d} y
$$

where D is the region enclosed by C. This simplifies to

$$
\iint_{D}-8 \mathrm{~d} x \mathrm{~d} y=-8(2 \pi)=-16 \pi
$$

because the area of the ellipse D is 2π.
Suppose you didn't know this last fact. You could derive it by either

- applying the change of variables $x=2 u, y=v$ to transform D into a circular disk S in the $u v$-plane, obtaining

$$
\iint_{D}-8 \mathrm{~d} x \mathrm{~d} y=\iint_{S}-16 \mathrm{~d} u \mathrm{~d} v=-16 \pi
$$

or

- applying Green's theorem again, returning to an integral along C, but choosing a nicer vector field $\langle P, Q\rangle$ with $Q_{x}-P_{y}=-8$. For example,

$$
\iint_{D}-8 \mathrm{~d} x \mathrm{~d} y=\int_{C}\langle 8 y, 0\rangle \cdot \mathrm{d} \mathbf{r}=\int_{0}^{2 \pi}-16(\sin t)^{2} \mathrm{~d} t=-16 \pi
$$

where we used the parametrization $x=2 \cos t, y=\sin t$. Note that the area formula $\int_{C} y \mathrm{~d} x$ from Chapter 10 is a special case of this method.

Problem 9. Suppose we have an object of mass M occupying some region D, and let $C M=(\bar{x}, \bar{y})$ be its center of mass. If $P=(a, b)$ is any point in the plane, we can define the moment of inertia about P as

$$
I_{P}=\int_{D}(\text { distance from } P \text { to }(x, y))^{2} \mathrm{~d} m
$$

a) Calculate $I_{P}-I_{C M}$, leaving your final answer in terms of the constants $a, b, \bar{x}, \bar{y}, M$ only (there should be no integrals in your final answer).

Solution. We write everything out and cancel some terms:

$$
\begin{aligned}
I_{P}-I_{C M} & =\int_{D}\left(\left((a-x)^{2}+(b-y)^{2}\right)-\left((\bar{x}-x)^{2}+(\bar{y}-y)^{2}\right)\right) \mathrm{d} m \\
& =\int_{D}\left(a^{2}-2 a x+b^{2}-2 b y-\bar{x}^{2}+2 \bar{x} x-\bar{y}^{2}+2 \bar{y} y\right) \mathrm{d} m .
\end{aligned}
$$

Observe that $\int_{D} \mathrm{~d} m=M$, and $\bar{x} M=\int_{D} x \mathrm{~d} m$ (similar equation for \bar{y}). Keep in mind also that everything other than x, y is a constant and can be moved out of the integral.

$$
I_{P}-I_{C M}=\left(a^{2}+b^{2}-\bar{x}^{2}-\bar{y}^{2}\right) M+(2 \bar{x}-2 a) \bar{x} M+(2 \bar{y}-2 b) \bar{y} M
$$

This already meets the requirements of the problem, but if you simplify further, you get

$$
I_{P}-I_{C M}=M\left((a-\bar{x})^{2}+(b-\bar{y})^{2}\right)
$$

where the parenthesized part is the distance from P to $C M$, squared.
b) Suppose that that our object is a circular cable of radius 2 centered at the origin with constant density and total mass $M=\pi$. Let $P=(1,0)$. Find I_{P}. (Even if you did not solve (a), you can do this directly.)

Solution using (a). Let C denote the circle. In this case, $C M=(0,0)$ by symmetry and $I_{C M}=\int_{C} 4 \mathrm{~d} m=$ $4 M=4 \pi$. So the formula from (a) yields

$$
I_{P}-4 \pi=\pi
$$

hence $I_{P}=5 \pi$.

Solution by direct computation. The length of the cable C is 4π, so the density is $M /(4 \pi)=1 / 4$.

$$
\begin{aligned}
I_{P}=\int_{C}\left((x-1)^{2}+y^{2}\right) \mathrm{d} m & =\int_{C}\left((x-1)^{2}+y^{2}\right) \frac{1}{4} \mathrm{~d} s \\
& =\int_{0}^{2 \pi}(5-4 \cos t) \frac{1}{4} 2 \mathrm{~d} t \\
& =5 \pi
\end{aligned}
$$

where we used the parametrization $x=2 \cos t, y=2 \sin t$.

